TY - GEN
T1 - One DoF robotic hand that makes human laugh by tickling through rubbing underarm
AU - Kishi, T.
AU - Nozawa, T.
AU - Nibori, A.
AU - Futaki, H.
AU - Miura, Y.
AU - Shina, M.
AU - Matsuki, K.
AU - Yanagino, H.
AU - Cosentino, S.
AU - Hashimoto, K.
AU - Takanishi, A.
N1 - Publisher Copyright:
© 2016 IEEE.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2016/11/28
Y1 - 2016/11/28
N2 - This paper describes the development of one DoF robotic hand that makes human laugh by tickling through rubbing underarm. Laughter is attracting research attention because it enhances health by treating or preventing mental diseases. However, laughter has not been used effectively in healthcare because the mechanism of laughter is complicated and is yet to be fully understood. The development of a robot capable of making humans laugh is useful for clarifying the mechanism of laughter because the stimuli by the robot is quantitative and reproductive. Especially, tickling matches to this purpose because the relationship between stimuli and reaction is simpler compared to other techniques. Therefore, this research aimed to develop a robotic hand that can output quantitative and reproductive tickling stimuli for clarifying the mechanism of laughter. Rubbing underarm is selected as a target motion of robot because previous research suggested that this is the best way for making humans feel ticklish. In order to achieve the tickling motion by robots as humans, the required specifications were determined through experimental method. In order to develop a robot that achieves the required fingertip trajectory by simple mechanisms as much as possible, mechanism with crank and link driven by single motor was developed. The result of experimental evaluation shows that the developed robot could make humans laugh by its rubbing motion. In addition, the quantitative tickling motion by developed robotic hand was suggested to be effective for clarifying the mechanism of laughter.
AB - This paper describes the development of one DoF robotic hand that makes human laugh by tickling through rubbing underarm. Laughter is attracting research attention because it enhances health by treating or preventing mental diseases. However, laughter has not been used effectively in healthcare because the mechanism of laughter is complicated and is yet to be fully understood. The development of a robot capable of making humans laugh is useful for clarifying the mechanism of laughter because the stimuli by the robot is quantitative and reproductive. Especially, tickling matches to this purpose because the relationship between stimuli and reaction is simpler compared to other techniques. Therefore, this research aimed to develop a robotic hand that can output quantitative and reproductive tickling stimuli for clarifying the mechanism of laughter. Rubbing underarm is selected as a target motion of robot because previous research suggested that this is the best way for making humans feel ticklish. In order to achieve the tickling motion by robots as humans, the required specifications were determined through experimental method. In order to develop a robot that achieves the required fingertip trajectory by simple mechanisms as much as possible, mechanism with crank and link driven by single motor was developed. The result of experimental evaluation shows that the developed robot could make humans laugh by its rubbing motion. In addition, the quantitative tickling motion by developed robotic hand was suggested to be effective for clarifying the mechanism of laughter.
UR - http://www.scopus.com/inward/record.url?scp=85006427465&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85006427465&partnerID=8YFLogxK
U2 - 10.1109/IROS.2016.7759086
DO - 10.1109/IROS.2016.7759086
M3 - Conference contribution
AN - SCOPUS:85006427465
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 404
EP - 409
BT - IROS 2016 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016
Y2 - 9 October 2016 through 14 October 2016
ER -