Online event classification for liver needle insertion based on force patterns

Inko Elgezua*, Sangha Song, Yo Kobayashi, Masakatsu G. Fujie

*この研究の対応する著者

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Abstract In recent years percutaneous treatments for cancer have won momentum in the medical field. With it new needle insertion robots appeared to overcome the difficulties associated with needle insertion into soft tissue. At first, the main focus was to achieve high needle placement accuracy, however, the focus nowadays has shifted toward needle steering and patient specific needle tissue interaction. In this paper we present a classification method to detect the type of tissue being punctured in real time. The purpose of the proposed method is to detect particular events that can be used in a situational awareness agent. First,wewill introduce themethodology to create the statistical models used for classification, next, we prove the feasibility of the proposed classification method with experimental results and show that the proposed method hit a target even when tissue is deformed by analyzing needle insertion force patterns.

本文言語English
ホスト出版物のタイトルAdvances in Intelligent Systems and Computing
出版社Springer Verlag
ページ1145-1157
ページ数13
302
ISBN(印刷版)9783319083377
DOI
出版ステータスPublished - 2016
イベント13th International Conference on Intelligent Autonomous Systems, IAS 2014 - Padova, Italy
継続期間: 2014 7月 152014 7月 18

出版物シリーズ

名前Advances in Intelligent Systems and Computing
302
ISSN(印刷版)21945357

Other

Other13th International Conference on Intelligent Autonomous Systems, IAS 2014
国/地域Italy
CityPadova
Period14/7/1514/7/18

ASJC Scopus subject areas

  • 制御およびシステム工学
  • コンピュータ サイエンス(全般)

フィンガープリント

「Online event classification for liver needle insertion based on force patterns」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル