Online motion selection for semi-optimal stabilization using reverse-time tree

Chyon Hae Kim*, Hiroshi Tsujino, Shigeki Sugano

*この研究の対応する著者

研究成果: Conference contribution

11 被引用数 (Scopus)

抄録

This paper presents a general method for creating an approximately optimal online stabilization system. An optimal stabilization system is an ideal online system that can calculate each optimal motion leading to a stable mechanical goal state depending on the current state. We propose a system that selects each semi-optimal motion according to the current state from a reverse-time tree. To create the reverse-time tree, we applied rapid semi-optimal motion planning method (RASMO) to a reverse-time search from a stable state. We also developed an online motion selection technique. To validate the proposed method, we simulated the stabilization of a double inverted pendulum. When we used an optimization criteria, time optimal, the system quickly stabilized the pendulum's posture and velocity. When we used higher resolution RASMO, the time approached the optimal time. The general framework proposed here is applicable to a variety of machines.

本文言語English
ホスト出版物のタイトルIROS'11 - 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
ホスト出版物のサブタイトルCelebrating 50 Years of Robotics
ページ3792-3799
ページ数8
DOI
出版ステータスPublished - 2011 12月 29
イベント2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS'11 - San Francisco, CA, United States
継続期間: 2011 9月 252011 9月 30

出版物シリーズ

名前IEEE International Conference on Intelligent Robots and Systems

Conference

Conference2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS'11
国/地域United States
CitySan Francisco, CA
Period11/9/2511/9/30

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用

フィンガープリント

「Online motion selection for semi-optimal stabilization using reverse-time tree」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル