TY - JOUR
T1 - Optical response and electronic structure of Zn-doped MgAl 2O4
AU - Izumi, K.
AU - Mizokawa, T.
AU - Hanamura, E.
PY - 2007
Y1 - 2007
N2 - We have studied the optical response and the electronic structure of Zn-doped Mg Al2 O4 using optical transmission, emission, and excitation spectroscopies, x-ray photoemission spectroscopy, and unrestricted Hartree-Fock calculation. Emission lines at 710, 650, and 470 nm observed in pure Mg Al2 O4 are related to the Mg vacancies and Mg-Al antisite defects. Interestingly, the intensities of these emission lines are enhanced by Zn doping. Unrestricted Hartree-Fock calculation for Zn-doped Mg Al2 O4 shows that in-gap impurity states are formed just above the valence-band maximum of Mg Al2 O4 when the Zn ion is substituted for the B-site Al ion. On the other hand, no in-gap state is formed when the Zn ion is substituted for the A -site Mg ion. The position of the Zn (3d) impurity level is identified by the photoemission measurement. The broad spectral features of the defect-induced states in pure Mg Al2 O4 is dramatically reduced by the Zn doping, indicating that holes supplied from the Zn ions at B site are trapped by the defect-induced states.
AB - We have studied the optical response and the electronic structure of Zn-doped Mg Al2 O4 using optical transmission, emission, and excitation spectroscopies, x-ray photoemission spectroscopy, and unrestricted Hartree-Fock calculation. Emission lines at 710, 650, and 470 nm observed in pure Mg Al2 O4 are related to the Mg vacancies and Mg-Al antisite defects. Interestingly, the intensities of these emission lines are enhanced by Zn doping. Unrestricted Hartree-Fock calculation for Zn-doped Mg Al2 O4 shows that in-gap impurity states are formed just above the valence-band maximum of Mg Al2 O4 when the Zn ion is substituted for the B-site Al ion. On the other hand, no in-gap state is formed when the Zn ion is substituted for the A -site Mg ion. The position of the Zn (3d) impurity level is identified by the photoemission measurement. The broad spectral features of the defect-induced states in pure Mg Al2 O4 is dramatically reduced by the Zn doping, indicating that holes supplied from the Zn ions at B site are trapped by the defect-induced states.
UR - http://www.scopus.com/inward/record.url?scp=34548616963&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34548616963&partnerID=8YFLogxK
U2 - 10.1063/1.2777528
DO - 10.1063/1.2777528
M3 - Article
AN - SCOPUS:34548616963
SN - 0021-8979
VL - 102
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 5
M1 - 053109
ER -