Orbital-free density functional theory calculation applying semi-local machine-learned kinetic energy density functional and kinetic potential

Mikito Fujinami, Ryo Kageyama, Junji Seino, Yasuhiro Ikabata, Hiromi Nakai*

*この研究の対応する著者

研究成果: Article査読

39 被引用数 (Scopus)

抄録

This letter proposes a scheme of orbital-free density functional theory (OF-DFT) calculation for optimizing electron density based on a semi-local machine-learned (ML) kinetic energy density functional (KEDF). The electron density, which is represented by the square of the linear combination of Gaussian functions, is optimized using derivatives of electronic energy including ML kinetic potential (KP). The numerical assessments confirmed the accuracy of optimized density and total energy for atoms and small molecules obtained by the present scheme based on ML-KEDF and ML-KP.

本文言語English
論文番号137358
ジャーナルChemical Physics Letters
748
DOI
出版ステータスPublished - 2020 6月

ASJC Scopus subject areas

  • 物理学および天文学一般
  • 物理化学および理論化学

フィンガープリント

「Orbital-free density functional theory calculation applying semi-local machine-learned kinetic energy density functional and kinetic potential」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル