Overcomplete BSS for convolutive mixtures based on hierarchical clustering

Stefan Winter*, Hiroshi Sawada, Shoko Araki, Shoji Makino

*この研究の対応する著者

研究成果: Chapter

22 被引用数 (Scopus)

抄録

In this paper we address the problem of overcomplete BSS for convolutive mixtures following a two-step approach. In the first step the mixing matrix is estimated, which is then used to separate the signals in the second step. For estimating the mixing matrix we propose an algorithm based on hierarchical clustering, assuming that the source signals are sufficiently sparse. It has the advantage of working directly on the complex valued sample data in the frequency-domain. It also shows better convergence than algorithms based on self-organizing maps. The results are improved by reducing the variance of direction of arrival. Experiments show accurate estimations of the mixing matrix and very low musical tone noise.

本文言語English
ホスト出版物のタイトルLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
編集者Carlos G. Puntonet, Alberto Prieto
出版社Springer Verlag
ページ652-660
ページ数9
ISBN(電子版)3540230564, 9783540230564
DOI
出版ステータスPublished - 2004
外部発表はい

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
3195
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Overcomplete BSS for convolutive mixtures based on hierarchical clustering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル