Pairwise similarity for line extraction from distorted images

Hideitsu Hino, Jun Fujiki, Shotaro Akaho, Yoshihiko Mochizuki, Noboru Murata

研究成果: Conference contribution

抄録

Clustering a given set of data is crucial in many fields including image processing. It plays important roles in image segmentation and object detection for example. This paper proposes a framework of building a similarity matrix for a given dataset, which is then used for clustering the dataset. The similarity between two points are defined based on how other points distribute around the line connecting the two points. It can capture the degree of how the two points are placed on the same line. The similarity matrix is considered as a kernel matrix of the given dataset, and based on it, the spectral clustering is performed. Clustering with the proposed similarity matrix is shown to perform well through experiments using an artificially designed problem and a real-world problem of detecting lines from a distorted image.

本文言語English
ホスト出版物のタイトルComputer Analysis of Images and Patterns - 15th International Conference, CAIP 2013, Proceedings
ページ250-257
ページ数8
PART 2
DOI
出版ステータスPublished - 2013
イベント15th International Conference on Computer Analysis of Images and Patterns, CAIP 2013 - York, United Kingdom
継続期間: 2013 8月 272013 8月 29

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
番号PART 2
8048 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference15th International Conference on Computer Analysis of Images and Patterns, CAIP 2013
国/地域United Kingdom
CityYork
Period13/8/2713/8/29

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Pairwise similarity for line extraction from distorted images」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル