Parametric Approximation of Piano Sound Based on Kautz Model with Sparse Linear Prediction

Kenji Kobayashi, Daiki Takeuchi, Mio Iwamoto, Kohei Yatabe, Yasuhiro Oikawa

研究成果: Conference contribution

5 被引用数 (Scopus)

抄録

The piano is one of the most popular and attractive musical instruments that leads to a lot of research on it. To synthesize the piano sound in a computer, many modeling methods have been proposed from full physical models to approximated models. The focus of this paper is on the latter, approximating piano sound by an IIR filter. For stably estimating parameters, the Kautz model is chosen as the filter structure. Then, the selection of poles and excitation signal rises as the questions which are typical to the Kautz model that must be solved. In this paper, sparsity based construction of the Kautz model is proposed for approximating piano sound.

本文言語English
ホスト出版物のタイトル2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ626-630
ページ数5
ISBN(印刷版)9781538646588
DOI
出版ステータスPublished - 2018 9月 10
イベント2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
継続期間: 2018 4月 152018 4月 20

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2018-April
ISSN(印刷版)1520-6149

Other

Other2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
国/地域Canada
CityCalgary
Period18/4/1518/4/20

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Parametric Approximation of Piano Sound Based on Kautz Model with Sparse Linear Prediction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル