Path-integral renormalization group method for numerical study of strongly correlated electron systems

Masatoshi Imada*, Tsuyoshi Kashima

*この研究の対応する著者

研究成果: Article査読

70 被引用数 (Scopus)

抄録

A numerical algorithm for studying strongly correlated electron systems is proposed. The groundstate wavefunction is projected out after a numerical renormalization procedure in the path integral formalism. The wavefunction is expressed from the optimized linear combination of retained states in the truncated Hilbert space with a numerically chosen basis. This algorithm does not suffer from the negative sign problem and can be applied to any type of Hamiltonian in any dimension. The efficiency is tested in examples of the Hubbard model where the basis of Slater determinants is numerically optimized. We show results on fast convergence and accuracy achieved with a small number of retained states.

本文言語English
ページ(範囲)2723-2726
ページ数4
ジャーナルjournal of the physical society of japan
69
9
DOI
出版ステータスPublished - 2000 9月
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Path-integral renormalization group method for numerical study of strongly correlated electron systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル