Period differential equations for the families of K3 surfaces with two parameters derived from the reflexive polytopes

Atsuhira Nagano*

*この研究の対応する著者

    研究成果: Article査読

    4 被引用数 (Scopus)

    抄録

    In this paper, we study the period mappings for the families of K3 surfaces derived from the three-dimensional reflexive polytopes with five vertices. We determine the lattice structures, the period differential equations and the projectivemonodromy groups.Moreover, we show that one of our period differential equations coincides with the uniformizing differential equation of the Hilbert modular orbifold for the field ℚ(√5).

    本文言語English
    ページ(範囲)193-244
    ページ数52
    ジャーナルKyushu Journal of Mathematics
    66
    1
    DOI
    出版ステータスPublished - 2012

    ASJC Scopus subject areas

    • 数学 (全般)

    フィンガープリント

    「Period differential equations for the families of K3 surfaces with two parameters derived from the reflexive polytopes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル