Periodic and optical soliton solutions of the quintic complex Swift-Hohenberg equation

Adrian Ankiewicz, Ken ichi Maruno*, Nail Akhmediev

*この研究の対応する著者

研究成果: Article査読

22 被引用数 (Scopus)

抄録

Using a direct ansatz approach, we have found a number of periodic zero-velocity analytic solutions of the complex quintic Swift-Hohenberg equation (CSHE). These find application in assorted optical problems. Particular cases of periodic solutions, where the elliptic function modulus equals 1, are various localized solutions of the CSHE. Each of these solutions exists for a certain relation between the parameters of the equation. As a result, they are particular cases of the complete set of periodic and localised solutions which may exist for this equation. In fact, they are multi-parameter families of solutions and they can serve as a seeding set of solutions which could be useful in other optical studies. We have also derived energy and momentum balance equations for the solutions of CSHE and checked that our stationary solutions satisfy the energy balance equation.

本文言語English
ページ(範囲)397-404
ページ数8
ジャーナルPhysics Letters, Section A: General, Atomic and Solid State Physics
308
5-6
DOI
出版ステータスPublished - 2003 3月 10
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Periodic and optical soliton solutions of the quintic complex Swift-Hohenberg equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル