Periodic solutions for singular Hamiltonian systems and closed geodesics on non-compact Riemannian manifolds

Kazunaga Tanaka*

*この研究の対応する著者

研究成果: Article査読

16 被引用数 (Scopus)

抄録

We study the existence of periodic solutions of singular Hamiltonian systems as well as closed geodesics on non-compact Riemannian manifolds via variational methods. For Hamiltonian systems, we show the existence of a periodic solution of prescribed-energy problem: q̇̇+∇V(q)=0, 1/2|q̇|2+V(q)=0 under the conditions: (i) V(q) < 0 for all q ∈ ℝN \ {0}; (ii) V(q) ∼ -1/|q|2 as |q| ∼ 0 and \q\ ~∼ ∞. For closed geodesics, we show the existence of a non-constant closed geodesic on (ℝ × SN-1, g) under the condition: g(s,x) ∼ ds2 + h0 as s ∼ ± ∞, where h0 is the standard metric on SN-1.

本文言語English
ページ(範囲)1-33
ページ数33
ジャーナルAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
17
1
DOI
出版ステータスPublished - 2000 1月

ASJC Scopus subject areas

  • 分析
  • 数理物理学
  • 応用数学

フィンガープリント

「Periodic solutions for singular Hamiltonian systems and closed geodesics on non-compact Riemannian manifolds」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル