Personalized Landmark Recommendation for Language-Specific Users by Open Data Mining

Siya Bao*, Masao Yanagisawa, Nozomu Togawa

*この研究の対応する著者

研究成果: Chapter

1 被引用数 (Scopus)

抄録

This paper proposes a personalized landmark recommendation algorithm aiming at exploring new sights into the determinants of landmark satisfaction prediction. We gather 1,219,048 user-generated comments in Tokyo, Shanghai and New York from four travel websites. We find that users have diverse satisfaction on landmarks those findings, we propose an effective algorithm for personalize landmark satisfaction prediction. Our algorithm provides the top-6 landmarks with the highest satisfaction to users for a one-day trip plan our proposed algorithm has better performances than previous studies from the viewpoints of landmark recommendation and landmark satisfaction prediction.

本文言語English
ホスト出版物のタイトルStudies in Computational Intelligence
出版社Springer Verlag
ページ107-121
ページ数15
DOI
出版ステータスPublished - 2019

出版物シリーズ

名前Studies in Computational Intelligence
791
ISSN(印刷版)1860-949X

ASJC Scopus subject areas

  • 人工知能

フィンガープリント

「Personalized Landmark Recommendation for Language-Specific Users by Open Data Mining」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル