Pizzetti formula on the Grassmannian of 2-planes

D. Eelbode*, Y. Homma

*この研究の対応する著者

研究成果: Article査読

抄録

This paper is devoted to the role played by the Higgs algebra H3 in the generalisation of classical harmonic analysis from the sphere Sm-1 to the (oriented) Grassmann manifold Gr o(m, 2) of 2-planes. This algebra is identified as the dual partner (in the sense of Howe duality) of the orthogonal group SO (m) acting on functions on the Grassmannian. This is then used to obtain a Pizzetti formula for integration over this manifold. The resulting formulas are finally compared to formulas obtained earlier for the Pizzetti integration over Stiefel manifolds, using an argument involving symmetry reduction.

本文言語English
ページ(範囲)325-350
ページ数26
ジャーナルAnnals of Global Analysis and Geometry
58
3
DOI
出版ステータスPublished - 2020 10月 1

ASJC Scopus subject areas

  • 分析
  • 政治学と国際関係論
  • 幾何学とトポロジー

フィンガープリント

「Pizzetti formula on the Grassmannian of 2-planes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル