抄録
This paper studies beta ensembles on the real line in a high temperature regime, that is, the regime where βN→ const∈ (0 , ∞) , with N the system size and β the inverse temperature. For the global behavior, the convergence to the equilibrium measure is a consequence of a recent result on large deviation principle. This paper focuses on the local behavior and shows that the local statistics around any fixed reference energy converges weakly to a homogeneous Poisson point process.
本文言語 | English |
---|---|
ページ(範囲) | 632-649 |
ページ数 | 18 |
ジャーナル | Journal of Statistical Physics |
巻 | 179 |
号 | 2 |
DOI | |
出版ステータス | Published - 2020 4月 1 |
ASJC Scopus subject areas
- 統計物理学および非線形物理学
- 数理物理学