TY - GEN
T1 - Polycrystalline CPP-GMR devices using <001> textured Co2Fe(Ga0.5Ge0.5) Heusler alloy layer and conductive Mg0.5Ti0.5Ox buffer layer
AU - Du, Y.
AU - Furubayashi, T.
AU - Takahashi, Y.
AU - Sakuraba, Y.
AU - Hono, K.
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/7/14
Y1 - 2015/7/14
N2 - Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Co-based Heusler alloys have recently drawn considerable attention due to their potential application as read sensors for ultrahigh density magnetic recording.1,2,3,4 With a non-magnetic Ag spacer layer, the resistance change-area product (ΔRA) of epitaxial pseudo spin valves (PSVs) on single crystalline (001) MgO substrates has exceeded 10 mΩ μm2 by using quaternary ferromagnetic (FM) Heusler alloys such as Co2Fe(Ga0.5Ge0.5) (CFGG) and Co2Fe0.4Mn0.6Si (CFMS). From a practical point of view, however, we need to develop CPP-GMR sensors with polycrystalline thin films at relatively low annealing temperatures (<400°C). Our previous work on <001> textured polycrystalline CPP-GMR using MgO buffer layer showed favorable device thermal stability and moderate ΔRA of 5.8 mΩ μm2 at 400°C was obtained. Nevertheless, it is not industrially viable because MgO as an insulator cannot be used for the fabrication of the actual CPP-GMR sensors. In this work, we report the CPP-GMR properties and microstructure of PSV devices using <001> textured FM Heusler layer CFGG and Ag spacer with a conductive buffer layer Mg0.5Ti0.5Ox (MTO)6 deposited on an chemically-mechanically polished (CMP) Ta/Cu/Ta electrode on thermally oxidized Si substrates. Relatively large ΔRA of 6.6 mΩ μm2 and desirable interfacial smoothness make it a promising candidate for actual read head design.
AB - Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Co-based Heusler alloys have recently drawn considerable attention due to their potential application as read sensors for ultrahigh density magnetic recording.1,2,3,4 With a non-magnetic Ag spacer layer, the resistance change-area product (ΔRA) of epitaxial pseudo spin valves (PSVs) on single crystalline (001) MgO substrates has exceeded 10 mΩ μm2 by using quaternary ferromagnetic (FM) Heusler alloys such as Co2Fe(Ga0.5Ge0.5) (CFGG) and Co2Fe0.4Mn0.6Si (CFMS). From a practical point of view, however, we need to develop CPP-GMR sensors with polycrystalline thin films at relatively low annealing temperatures (<400°C). Our previous work on <001> textured polycrystalline CPP-GMR using MgO buffer layer showed favorable device thermal stability and moderate ΔRA of 5.8 mΩ μm2 at 400°C was obtained. Nevertheless, it is not industrially viable because MgO as an insulator cannot be used for the fabrication of the actual CPP-GMR sensors. In this work, we report the CPP-GMR properties and microstructure of PSV devices using <001> textured FM Heusler layer CFGG and Ag spacer with a conductive buffer layer Mg0.5Ti0.5Ox (MTO)6 deposited on an chemically-mechanically polished (CMP) Ta/Cu/Ta electrode on thermally oxidized Si substrates. Relatively large ΔRA of 6.6 mΩ μm2 and desirable interfacial smoothness make it a promising candidate for actual read head design.
UR - http://www.scopus.com/inward/record.url?scp=84942436472&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84942436472&partnerID=8YFLogxK
U2 - 10.1109/INTMAG.2015.7157286
DO - 10.1109/INTMAG.2015.7157286
M3 - Conference contribution
AN - SCOPUS:84942436472
T3 - 2015 IEEE International Magnetics Conference, INTERMAG 2015
BT - 2015 IEEE International Magnetics Conference, INTERMAG 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2015 IEEE International Magnetics Conference, INTERMAG 2015
Y2 - 11 May 2015 through 15 May 2015
ER -