Positive steady states for prey-predator models with cross-diffusion

Kimie Nakashima, Yoshio Yamada*

*この研究の対応する著者

    研究成果: Article査読

    53 被引用数 (Scopus)

    抄録

    This paper is concerned with the existence of positive solutions for boundary value problems of nonlinear elliptic systems which arise in the study of the Lotka-Volterra prey-predator model with cross-diffusion. Making use of the theory of the fixed point index we can derive sufficient conditions for the coexistence of positive steady states. Moreover, when cross-diffusion effects are comparatively small, we can get a necessary and sufficient condition for the coexistence. The uniqueness result is also given in the special case when the spatial dimension is one.

    本文言語English
    ページ(範囲)1099-1122
    ページ数24
    ジャーナルAdvances in Differential Equations
    1
    6
    出版ステータスPublished - 1996

    ASJC Scopus subject areas

    • 分析
    • 応用数学

    フィンガープリント

    「Positive steady states for prey-predator models with cross-diffusion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル