TY - GEN
T1 - Post-discharge study of laser-triggered vacuum discharge for highly repetitive powerful EUV source
AU - Lu, P.
AU - Kitajima, S.
AU - Lim, S.
AU - Katsuki, S.
AU - Akiyama, H.
PY - 2013
Y1 - 2013
N2 - Extreme ultraviolet (EUV) source remains a key issue for industrial application of EUV lithography. Currently, laser-triggered discharge (LTD) tin plasma is the most promising discharge produced plasma EUV source scheme. High frequency discharge of up to tens of kHz is required to achieve sufficient average radiation power. However, the choice of discharge frequency is restricted by the recovery time of the remnant plasma in the post discharge stage. Although much work has been performed to investigate discharge plasma dynamics and its corresponding EUV radiation process during main discharge, study regarding post-discharge stage of LTD tin plasma EUV source is scant. In this paper, we present a post-discharge study of a laser-triggered vacuum discharge for high repetition rate EUV source. The insulation strength recovery curve of tin fuel residual between electrodes was measured by time lapse electrical breakdown voltage test. In addition, the two-laser triggered discharge system was built to model the high frequency operation of the laser-triggered discharge plasma EUV source. The intensity recovery process of EUV radiation with different discharge time intervals was measured. Time relation between two recovery processes of electrical insulation strength and EUV radiation has been discussed for the estimation of optimal frequency in our LTDPP EUV source.
AB - Extreme ultraviolet (EUV) source remains a key issue for industrial application of EUV lithography. Currently, laser-triggered discharge (LTD) tin plasma is the most promising discharge produced plasma EUV source scheme. High frequency discharge of up to tens of kHz is required to achieve sufficient average radiation power. However, the choice of discharge frequency is restricted by the recovery time of the remnant plasma in the post discharge stage. Although much work has been performed to investigate discharge plasma dynamics and its corresponding EUV radiation process during main discharge, study regarding post-discharge stage of LTD tin plasma EUV source is scant. In this paper, we present a post-discharge study of a laser-triggered vacuum discharge for high repetition rate EUV source. The insulation strength recovery curve of tin fuel residual between electrodes was measured by time lapse electrical breakdown voltage test. In addition, the two-laser triggered discharge system was built to model the high frequency operation of the laser-triggered discharge plasma EUV source. The intensity recovery process of EUV radiation with different discharge time intervals was measured. Time relation between two recovery processes of electrical insulation strength and EUV radiation has been discussed for the estimation of optimal frequency in our LTDPP EUV source.
UR - http://www.scopus.com/inward/record.url?scp=84888593268&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84888593268&partnerID=8YFLogxK
U2 - 10.1109/PPC.2013.6627705
DO - 10.1109/PPC.2013.6627705
M3 - Conference contribution
AN - SCOPUS:84888593268
SN - 9781467351676
T3 - Digest of Technical Papers-IEEE International Pulsed Power Conference
BT - 2013 19th IEEE Pulsed Power Conference, PPC 2013
T2 - 2013 19th IEEE Pulsed Power Conference, PPC 2013
Y2 - 16 June 2013 through 21 June 2013
ER -