Precise optical modulation and its application to optoelectronic device measurement

Tetsuya Kawanishi*


研究成果: Review article査読

6 被引用数 (Scopus)


Optoelectronic devices which play important roles in high-speed optical fiber networks can offer effective measurement methods for optoelectronic devices including optical modulators and photodetectors. Precise optical signal modulation is required for measurement applications. This paper focuses on high-speed and precise optical modulation devices and their application to device measurement. Optical modulators using electro-optic effect offers precise control of lightwaves for wideband signals. As examples, this paper describes frequency response measurement of photodetectors using high-precision amplitude modulation and wavelength domain measurement of optical filters using fast optical frequency sweep. Precise and high-speed modulation can be achieved by active trimming which compensates device structure imbalance due to fabrication error, where preciseness can be described by on-off extinction ratio. A Mach-Zehnder modulator with sub Mach-Zehnder interferometors can offer high extinction-ratio optical intensity modulation, which can be used for precise optoelectronic frequency response measurement. Precise modulation would be also useful for multi-level modulation schemes. To investigate impact of finite extinction ratio on optical modulation, duobinary modulation with small signal operation was demonstrated. For optical frequency domain analysis, single sideband modulation, which shifts optical frequency, can be used for generation of stimulus signals. Rapid measurement of optical filters was performed by using an optical sweeper consisting of an integrated Mach-Zehnder modulator for optical frequency control and an arbitrary waveform generator for generation of a source frequency chirp signal.

出版ステータスPublished - 2021 5月

ASJC Scopus subject areas

  • 原子分子物理学および光学
  • 器械工学
  • 放射線学、核医学およびイメージング


「Precise optical modulation and its application to optoelectronic device measurement」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。