Predicting object dynamics from visual images through active sensing experiences

Shun Nishide*, Tetsuya Ogata, Jun Tani, Kazunori Komatani, Hiroshi G. Okuno

*この研究の対応する著者

研究成果: Article査読

19 被引用数 (Scopus)

抄録

Prediction of dynamic features is an important task for determining the manipulation strategies of an object. This paper presents a technique for predicting dynamics of objects relative to the robot's motion from visual images. During the training phase, the authors use the recurrent neural network with parametric bias (RNNPB) to self-organize the dynamics of objects manipulated by the robot into the PB space. The acquired PB values, static images of objects and robot motor values are input into a hierarchical neural network to link the images to dynamic features (PB values). The neural network extracts prominent features that each induce object dynamics. For prediction of the motion sequence of an unknown object, the static image of the object and robot motor value are input into the neural network to calculate the PB values. By inputting the PB values into the closed loop RNNPB, the predicted movements of the object relative to the robot motion are calculated recursively. Experiments were conducted with the humanoid robot Robovie-IIs pushing objects at different heights. The results of the experiment predicting the dynamics of target objects proved that the technique is efficient for predicting the dynamics of the objects.

本文言語English
ページ(範囲)527-546
ページ数20
ジャーナルAdvanced Robotics
22
5
DOI
出版ステータスPublished - 2008 4月 1
外部発表はい

ASJC Scopus subject areas

  • ソフトウェア
  • 制御およびシステム工学
  • 人間とコンピュータの相互作用
  • ハードウェアとアーキテクチャ
  • コンピュータ サイエンスの応用

フィンガープリント

「Predicting object dynamics from visual images through active sensing experiences」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル