Predicting object dynamics from visual images through active sensing experiences

Shun Nishide*, Tetsuya Ogata, Jun Tani, Kazunori Komatani, Hiroshi G. Okuno

*この研究の対応する著者

研究成果: Conference contribution

7 被引用数 (Scopus)

抄録

Prediction of dynamic features is an important task for determining the manipulation strategies of an object. This paper presents a technique for predicting dynamics of objects relative to the robot's motion from visual images. During the learning phase, the authors use Recurrent Neural Network with Parametric Bias (RNNPB) to self-organize the dynamics of objects manipulated by the robot into the PB space. The acquired PB values, static images of objects, and robot motor values are input into a hierarchical neural network to link the static images to dynamic features (PB values). The neural network extracts prominent features that induce each object dynamics. For prediction of the motion sequence of an unknown object, the static image of the object and robot motor value are input into the neural network to calculate the PB values. By inputting the PB values into the closed loop RNNPB, the predicted movements of the object relative to the robot motion are calculated sequentially. Experiments were conducted with the humanoid robot Robovie-IIs pushing objects at different heights. Reducted grayscale images and shoulder pitch angles were input into the neural network to predict the dynamics of target objects. The results of the experiment proved that the technique is efficient for predicting the dynamics of the objects.

本文言語English
ホスト出版物のタイトル2007 IEEE International Conference on Robotics and Automation, ICRA'07
ページ2501-2506
ページ数6
DOI
出版ステータスPublished - 2007 11月 27
外部発表はい
イベント2007 IEEE International Conference on Robotics and Automation, ICRA'07 - Rome, Italy
継続期間: 2007 4月 102007 4月 14

出版物シリーズ

名前Proceedings - IEEE International Conference on Robotics and Automation
ISSN(印刷版)1050-4729

Conference

Conference2007 IEEE International Conference on Robotics and Automation, ICRA'07
国/地域Italy
CityRome
Period07/4/1007/4/14

ASJC Scopus subject areas

  • ソフトウェア
  • 制御およびシステム工学
  • 人工知能
  • 電子工学および電気工学

フィンガープリント

「Predicting object dynamics from visual images through active sensing experiences」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル