Prediction and imitation of other's motions by reusing own forward-inverse model in robots

Tetsuya Ogata*, Ryunosuke Yokoya, Jun Tani, Kazunori Komatani, Hiroshi G. Okuno

*この研究の対応する著者

研究成果: Conference contribution

8 被引用数 (Scopus)

抄録

This paper proposes a model that enables a robot to predict and imitate the motions of another by reusing its body forward-inverse model. Our model includes three approaches: (i) projection of a self-forward model for predicting phenomena in the external environment (other individuals), (ii) "triadic relation" that is mediation by a physical object between self and others, (iii) introduction of infant imitation by a parent. The Recurrent Neural Network with Parametric Bias (RNNPB) model is used as the robot's self forward-inverse model. A group of hierarchical neural networks are attached to the RNNPB model as "conversion modules". Experiments demonstrated that a robot with our model could imitate a human's motions by translating the viewpoint. It could also discriminate known/unknown motions appropriately, and associate whole motion dynamics from only one motion snap image.

本文言語English
ホスト出版物のタイトル2009 IEEE International Conference on Robotics and Automation, ICRA '09
ページ4144-4149
ページ数6
DOI
出版ステータスPublished - 2009 11月 2
外部発表はい
イベント2009 IEEE International Conference on Robotics and Automation, ICRA '09 - Kobe, Japan
継続期間: 2009 5月 122009 5月 17

出版物シリーズ

名前Proceedings - IEEE International Conference on Robotics and Automation
ISSN(印刷版)1050-4729

Conference

Conference2009 IEEE International Conference on Robotics and Automation, ICRA '09
国/地域Japan
CityKobe
Period09/5/1209/5/17

ASJC Scopus subject areas

  • ソフトウェア
  • 制御およびシステム工学
  • 人工知能
  • 電子工学および電気工学

フィンガープリント

「Prediction and imitation of other's motions by reusing own forward-inverse model in robots」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル