抄録
This study presents an analytical model to predict compressive strength of unidirectional FRP. Proposed model considers the effect of strain-rate dependency on mechanical properties of constituent materials. The model is based on the elastic foundation model and the microbuckling model of fiber which has initial misalignment in matrix. Compressive deformation of unidirectional FRP is considered by dividing into fiber microbuckling region and plastic kinking region. Additionally, to take into consideration the change in compressive deformation mode accompanying fiber volume fraction or fiber microbuckling, A mode function is introduced. The predictions from the proposed model are compared with experimental results of unidirectional E-glass/Epoxy and T700SC/Epoxy evaluated by using the conventional split Hopkinson pressure bar method. Incorporating strain-rate dependency on compressive modulus of reinforcement calculated from composite mixture law, the predictions are found to be in good agreement with experimental results of strain-rate dependency on compressive strength. Accuracy of the prediction is improved by changing the mode function.
本文言語 | English |
---|---|
ページ(範囲) | 1284-1299 |
ページ数 | 16 |
ジャーナル | Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A |
巻 | 78 |
号 | 793 |
DOI | |
出版ステータス | Published - 2012 |
外部発表 | はい |
ASJC Scopus subject areas
- 材料科学(全般)
- 材料力学
- 機械工学