TY - JOUR
T1 - Prediction of Elementary Reaction Mechanism for the CVD Process in Si2Cl6-H2 System using Semi-Empirical Molecular Orbital Method
AU - Saito, Nagahiro
AU - Fuwa, Akio
PY - 1999
Y1 - 1999
N2 - From our previous experimental study of the Si chemical vapor deposition in Si2Cl6-H2 system, the following elementary reaction mechanism was proposed: decomposition of Si2Cl6 to produce SiCl2, which becomes the adsorbent; Si2Cl6(g) → 2SiCl3(g) → SiCl4(g) + SiCl2(g) (→ SiCl2(a)), and hydrogen reduction reaction of the absorbed SiCl2 to produce Si(s). The preliminary quantum chemistry study for this reaction mechanism has shown that the reaction is so infeasible that the above-mentioned elementary reaction mechanism is unreasonable. The most feasible and appropriate reaction mechanism has been shown as follows: (Step 1) Si2Cl6(g) → SiCl4,(g) + SiCl2(g) (Step 2) SiCl2(g) +a → SiCl2(a) (Step 3) SiCl2(a) + H2(g) → SiCl(a) + 2HCl(g) (Step 3-1) SiCl2(a) + H2(g) → Si-2HCl(a) (Step 3-2) Si-2HCl(a) → Si(a) + 2HCl(g) where, a is the active site on silicon surface. On the assumption that step 3 is the rate-determining step, this elementary reaction mechanism can explain the experimental observation in the rate expression on the concentration dependence with respect to Si2Cl6 and H2.
AB - From our previous experimental study of the Si chemical vapor deposition in Si2Cl6-H2 system, the following elementary reaction mechanism was proposed: decomposition of Si2Cl6 to produce SiCl2, which becomes the adsorbent; Si2Cl6(g) → 2SiCl3(g) → SiCl4(g) + SiCl2(g) (→ SiCl2(a)), and hydrogen reduction reaction of the absorbed SiCl2 to produce Si(s). The preliminary quantum chemistry study for this reaction mechanism has shown that the reaction is so infeasible that the above-mentioned elementary reaction mechanism is unreasonable. The most feasible and appropriate reaction mechanism has been shown as follows: (Step 1) Si2Cl6(g) → SiCl4,(g) + SiCl2(g) (Step 2) SiCl2(g) +a → SiCl2(a) (Step 3) SiCl2(a) + H2(g) → SiCl(a) + 2HCl(g) (Step 3-1) SiCl2(a) + H2(g) → Si-2HCl(a) (Step 3-2) Si-2HCl(a) → Si(a) + 2HCl(g) where, a is the active site on silicon surface. On the assumption that step 3 is the rate-determining step, this elementary reaction mechanism can explain the experimental observation in the rate expression on the concentration dependence with respect to Si2Cl6 and H2.
KW - Chemical vapor deposition; CVD
KW - Elementary reaction
KW - Semi-empirical MO
KW - SiCl
UR - http://www.scopus.com/inward/record.url?scp=0346968284&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0346968284&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0346968284
SN - 0021-4876
VL - 63
SP - 319
EP - 325
JO - Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals
JF - Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals
IS - 3
ER -