TY - GEN
T1 - Primitive static states for intelligent operated-work machines
AU - Kamezaki, Mitsuhiro
AU - Iwata, Hiroyasu
AU - Sugano, Shigeki
PY - 2009
Y1 - 2009
N2 - Advanced operated-work machines, which have been designed for complicated tasks and which have complicated operating systems, requires intelligent systems that can provide the quantitative work analysis needed to determine effective work procedures and that can provide operational and cognitive support for operators. Construction work environments are extremely complicated, however, and this makes state identification, which is a key technology for an intelligent system, difficult. We therefore defined primitive static states (PSS) that are determined using on-off information for the lever inputs and manipulator loads for each part of the grapple and front and that are completely independent of the various environmental conditions and variation in operator skill level that can cause an incorrect work state identification. To confirm the usefulness of PSS, we performed experiments with a demolition task by using our virtual reality simulator. We confirmed that PSS could robustly and accurately identify the work states and that untrained skills could be easily inferred from the results of PSS-based work analysis. We also confirmed in skill-training experiments that advice information based on PSS-based skill analysis greatly improved operator's work performance. We thus confirmed that PSS can adequately identify work states and are useful for work analysis and skill improvement.
AB - Advanced operated-work machines, which have been designed for complicated tasks and which have complicated operating systems, requires intelligent systems that can provide the quantitative work analysis needed to determine effective work procedures and that can provide operational and cognitive support for operators. Construction work environments are extremely complicated, however, and this makes state identification, which is a key technology for an intelligent system, difficult. We therefore defined primitive static states (PSS) that are determined using on-off information for the lever inputs and manipulator loads for each part of the grapple and front and that are completely independent of the various environmental conditions and variation in operator skill level that can cause an incorrect work state identification. To confirm the usefulness of PSS, we performed experiments with a demolition task by using our virtual reality simulator. We confirmed that PSS could robustly and accurately identify the work states and that untrained skills could be easily inferred from the results of PSS-based work analysis. We also confirmed in skill-training experiments that advice information based on PSS-based skill analysis greatly improved operator's work performance. We thus confirmed that PSS can adequately identify work states and are useful for work analysis and skill improvement.
UR - http://www.scopus.com/inward/record.url?scp=70350370246&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350370246&partnerID=8YFLogxK
U2 - 10.1109/ROBOT.2009.5152848
DO - 10.1109/ROBOT.2009.5152848
M3 - Conference contribution
AN - SCOPUS:70350370246
SN - 9781424427895
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 1334
EP - 1339
BT - 2009 IEEE International Conference on Robotics and Automation, ICRA '09
T2 - 2009 IEEE International Conference on Robotics and Automation, ICRA '09
Y2 - 12 May 2009 through 17 May 2009
ER -