Primordial black hole formation from massless scalar isocurvature

Chul Moon Yoo, Tomohiro Harada, Shin'Ichi Hirano, Hirotada Okawa, Misao Sasaki

研究成果: Article査読

1 被引用数 (Scopus)


We numerically study the primordial black hole (PBH) formation by an isocurvature perturbation of a massless scalar field on super Hubble scales in the radiation-dominated Universe. As a first step we perform simulations of spherically symmetric configurations. For the initial condition, we employ the spatial gradient expansion and provide the general form of the growing mode solutions valid up through the second order in this expansion. The initial scalar field profile is assumed to be Gaussian with a characteristic comoving wave number k; ∼exp(-k2R2), where R is the radial coordinate. We find that a PBH is formed for a sufficiently large amplitude of the scalar field profile. Nevertheless, we find that the late time behavior of the gravitational collapse is dominated by the dynamics of the fluid but not by the scalar field, which is analogous to the PBH formation from an adiabatic perturbation in the radiation-dominated Universe.

ジャーナルPhysical Review D
出版ステータスPublished - 2022 5月 15

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学


「Primordial black hole formation from massless scalar isocurvature」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。