Privacy-Preserving Blockchained Edge Resource Auction With Fraud Resistance

Lixing Chen, Feng Gao, Yang Bai*, Jun Wu, Pan Zhou*, Zichuan Xu

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Blockchain has revolutionized a variety of fields by providing decentralization, immutability, transparency, and auditability. This paper designs Blockchained Edge Resource Auction (BERA) for edge computing systems to allocate computing resources to application service providers (ASP) in a secure manner. BERA comprises two key components: Blockchain-based Sealed-Bid Auction (BSBA) and Graph Neural Network (GNN)based Fraud Detection (GFD). BSBA designs smart contracts to realize sealed-bid auctions overhead blockchain. It incorporates the homomorphic commitment technique to guarantee the transactional privacy of ASPs’ bidding information and performs interval membership zero-knowledge proof to verify the legitimacy of auction results. While the privacy-preserving property of BSBA is desirable, the veiled bidding information tends to breed fraudulent behaviors. Therefore, GFD is further proposed to identify abnormal auction behaviors in BSBA without revealing bidding information of ASPs. GFD converts the blockchain data of BSBA to an auction behavioral graph of ASPs, and uses GNN to discover stealth frauds based on interactive patterns. In addition, we design a subgraph extraction scheme for GFD to improve its scalability. We implement BERA on a private Ethereum blockchain and successfully realize edge resource auctions. We simulate several types of auction frauds and identify them with GFD. The experimental results show that our method outperforms other benchmarks.

本文言語English
ページ(範囲)4076-4089
ページ数14
ジャーナルIEEE Transactions on Network and Service Management
21
4
DOI
出版ステータスPublished - 2024
外部発表はい

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 電子工学および電気工学

フィンガープリント

「Privacy-Preserving Blockchained Edge Resource Auction With Fraud Resistance」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル