Privacy-Preserving EEG Signal Analysis with Electrode Attention for Depression Diagnosis: Joint FHE and CNN Approach

Huanze Dong, Jun Wu*, Ali Kashif Bashir, Qianqian Pan*, Marwan Omar, Anwer Al-Dulaimi

*この研究の対応する著者

研究成果: Conference contribution

抄録

Artificial intelligence has been utilized to analyze patients' electroencephalograms (EEG) to diagnose depression. However, attackers can deduce patients' privacy after analyzing patients' EEG time series. Therefore, researchers propose to operate ciphertext calculation in depression diagnosis models based on homomorphic encryption. Nevertheless, homomorphic encryption requires consistent private keys during training, which could result in other participants decrypting the ci-phertexts. Additionally, existing EEG-based models neglect the relationship among electrode positions during EEG acquisition. To address these issues, we propose a novel training strategy for the depression diagnosis model based on fully homomorphic en-cryption (FHE) and electrode topology. Specifically, we establish a training strategy that prioritizes the privacy of patients' EEG data without compromising the cost-effectiveness of the diagnosis model. Furthermore, we incorporate the attention mechanism of electrode topology into our model to improve its performance and verify the relationship among topology locations. Our proposed model outperforms the original convolution neural network model, achieving higher accuracy in depression diagnosis and identifying virtual electrode channels for the first time.

本文言語English
ホスト出版物のタイトルGLOBECOM 2023 - 2023 IEEE Global Communications Conference
出版社Institute of Electrical and Electronics Engineers Inc.
ページ4265-4270
ページ数6
ISBN(電子版)9798350310900
DOI
出版ステータスPublished - 2023
イベント2023 IEEE Global Communications Conference, GLOBECOM 2023 - Kuala Lumpur, Malaysia
継続期間: 2023 12月 42023 12月 8

出版物シリーズ

名前Proceedings - IEEE Global Communications Conference, GLOBECOM
ISSN(印刷版)2334-0983
ISSN(電子版)2576-6813

Conference

Conference2023 IEEE Global Communications Conference, GLOBECOM 2023
国/地域Malaysia
CityKuala Lumpur
Period23/12/423/12/8

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 信号処理

フィンガープリント

「Privacy-Preserving EEG Signal Analysis with Electrode Attention for Depression Diagnosis: Joint FHE and CNN Approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル