Probability Distribution on Rooted Trees

Yuta Nakahara, Shota Saito, Akira Kamatsuka, Toshiyasu Matsushima

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

The hierarchical and recursive expressive capability of rooted trees is applicable to represent statistical models in various areas, such as data compression, image processing, and machine learning. On the other hand, such hierarchical expressive capability causes a problem in tree selection to avoid overfitting. One unified approach to solve this is a Bayesian approach, on which the rooted tree is regarded as a random variable and a direct loss function can be assumed on the selected model or the predicted value for a new data point. However, all the previous studies on this approach are based on the probability distribution on full trees, to the best of our knowledge. In this paper, we propose a generalized probability distribution for any rooted trees in which only the maximum number of child nodes and the maximum depth are fixed. Furthermore, we derive recursive methods to evaluate the characteristics of the probability distribution without any approximations.

本文言語English
ホスト出版物のタイトル2022 IEEE International Symposium on Information Theory, ISIT 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ174-179
ページ数6
ISBN(電子版)9781665421591
DOI
出版ステータスPublished - 2022
イベント2022 IEEE International Symposium on Information Theory, ISIT 2022 - Espoo, Finland
継続期間: 2022 6月 262022 7月 1

出版物シリーズ

名前IEEE International Symposium on Information Theory - Proceedings
2022-June
ISSN(印刷版)2157-8095

Conference

Conference2022 IEEE International Symposium on Information Theory, ISIT 2022
国/地域Finland
CityEspoo
Period22/6/2622/7/1

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 情報システム
  • モデリングとシミュレーション
  • 応用数学

フィンガープリント

「Probability Distribution on Rooted Trees」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル