Probing polymer-pendant interactions in the conducting redox polymer poly(pyrrol-3-ylhydroquinone)

Christoffer Karlsson, Hao Huang, Maria Strømme, Adolf Gogoll, Martin Sjödin*


研究成果: Article査読

30 被引用数 (Scopus)


Conducting polymers with redox active pendant groups show properties typical of both conducting polymers (i.e., capacitive charging and intrinsic conductivity) and redox polymers (i.e., electrochemical surface response at the formal potential of the pendant groups). The two components can also exert significant interaction on each other during their separate electrochemical reactions. In poly(pyrrol-3-ylhydroquinone), a polypyrrole derivative functionalized with hydroquinone units, the redox conversion of the pendant groups has a large impact on the polymer backbone. This interaction is manifested by a loss of bipolaron states during the hydroquinone oxidation, leading to a decreasing p-doping level with increasing potential, something which, to the best of our knowledge, has never been observed for a conducting polymer. Another effect is a contraction of the polymer film, and subsequent mass loss due to solvent expulsion upon hydroquinone oxidation, which counteracts the normal swelling of polypyrrole with increased potential. The conducting redox polymer under investigation has been synthesized via two routes, leading to different fractions of subunits bearing redox active hydroquinone groups. While the redox potentials are unaffected by the synthesis route, the backbone/pendant group interaction varies notably depending on the degree of quinone functionalization. This type of polymers could find use in, e.g., organic energy storage materials, since the polymer backbone both increases the electronic conductivity and prevents dissolution of the active material, as well as in actuator application, due to polymer contraction over the relatively narrow potential region where the pendant group redox chemistry occurs.

ジャーナルJournal of Physical Chemistry C
出版ステータスPublished - 2014 10月 16

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • エネルギー(全般)
  • 表面、皮膜および薄膜
  • 物理化学および理論化学


「Probing polymer-pendant interactions in the conducting redox polymer poly(pyrrol-3-ylhydroquinone)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。