Products of random walks on finite groups with moderate growth

Guan Yu Chen, Takashi Kumagai

研究成果: Article査読

抄録

In this article, we consider products of random walks on finite groups with moderate growth and discuss their cutoffs in the total variation. Based on several comparison techniques, we are able to identify the total variation cutoff of discrete time lazy random walks with the Hellinger distance cutoff of continuous time random walks. Along with the cutoff criterion for Laplace transforms, we derive a series of equivalent conditions on the existence of cutoffs, including the existence of pre-cutoffs, Peres' product condition and a formula generated by the graph diameters. For illustration, we consider products of Heisenberg groups and randomized products of finite cycles.

本文言語English
ページ(範囲)281-302
ページ数22
ジャーナルTohoku Mathematical Journal
71
2
DOI
出版ステータスPublished - 2019 6月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Products of random walks on finite groups with moderate growth」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル