Proteome analysis of shell matrix proteins in the brachiopod Laqueus rubellus

Yukinobu Isowa, Isao Sarashina, Kenshiro Oshima, Keiji Kito, Masahira Hattori, Kazuyoshi Endo*


研究成果: Article査読

26 被引用数 (Scopus)


Background: The calcitic brachipod shells contain proteins that play pivotal roles in shell formation and are important in understanding the evolution of biomineralization. Here, we performed a large-scale exploration of shell matrix proteins in the brachiopod Laqueus rubellus. Results: A total of 40 proteins from the shell were identified. Apart from five proteins, i.e., ICP-1, MSP130, a cysteine protease, a superoxide dismutase, and actin, all other proteins identified had no homologues in public databases. Among these unknown proteins, one shell matrix protein was identified with a domain architecture that includes a NAD(P) binding domain, an ABC-type transport system, a transmembrane region, and an aspartic acid rich region, which has not been detected in other biominerals. We also identified pectin lyase-like, trypsin inhibitor, and saposin B functional domains in the amino acid sequences of the shell matrix proteins. The repertoire of brachiopod shell matrix proteins also contains two basic amino acid-rich proteins and proteins that have a variety of repeat sequences. Conclusions: Our study suggests an independent origin and unique mechanisms for brachiopod shell formation.

ジャーナルProteome Science
出版ステータスPublished - 2015 8月 15

ASJC Scopus subject areas

  • 生化学
  • 分子生物学


「Proteome analysis of shell matrix proteins in the brachiopod Laqueus rubellus」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。