Pseudo-Poisson Nijenhuis Manifolds

Tomoya Nakamura

    研究成果: Article査読

    抄録

    We introduce the notion of pseudo-Poisson Nijenhuis manifolds. These manifolds are generalizations of Poisson Nijenhuis manifolds defined by Magri and Morosi [13]. We show that there is a one-to-one correspondence between the pseudo-Poisson Nijenhuis manifolds and certain quasi-Lie bialgebroid structures on the tangent bundle as in the case of Poisson Nijenhuis manifolds by Kosmann-Schwarzbach [7]. For that reason, we expand the general theory of the compatibility of a 2-vector field and a (1, 1)-tensor. We also introduce pseudo-symplectic Nijenhuis structures, and investigate properties of them. In particular, we show that those structures induce twisted Poisson structures [18].

    本文言語English
    ページ(範囲)121-135
    ページ数15
    ジャーナルReports on Mathematical Physics
    82
    1
    DOI
    出版ステータスPublished - 2018 8月 1

    ASJC Scopus subject areas

    • 統計物理学および非線形物理学
    • 数理物理学

    フィンガープリント

    「Pseudo-Poisson Nijenhuis Manifolds」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル