Quantum chemical reaction prediction method based on machine learning

Mikito Fujinami, Junji Seino, Hiromi Nakai*

*この研究の対応する著者

研究成果: Article査読

20 被引用数 (Scopus)

抄録

A quantum chemical reaction prediction (QC-RP) method based on machine learning was developed to predict chemical products from given reactants. The descriptors contain atomic information in reactants such as charge, molecular structure, and atomic/molecular orbitals obtained by the quantum chemical calculations. The QC-RP method involves two procedures, namely, learning and prediction. The learning procedure constructs screening and ranking classifiers using 1625 polar and 95 radical reactions in a textbook of organic chemistry. In the prediction procedure, the screening classifier distinguishes reactive and unreactive atoms and the ranking one provides reactive atom pairs in ranking order. Numerical assessments confirmed the high accuracies both of the screening and ranking classifiers in the prediction procedures. Furthermore, an analysis on the classifiers unveiled important descriptors for the prediction.

本文言語English
ページ(範囲)685-693
ページ数9
ジャーナルBulletin of the Chemical Society of Japan
93
5
DOI
出版ステータスPublished - 2020

ASJC Scopus subject areas

  • 化学一般

フィンガープリント

「Quantum chemical reaction prediction method based on machine learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル