Quenched invariance principle for long range random walks in balanced random environments

Xin Chen, Zhen Qing Chen, Takashi Kumagai, Jian Wang

研究成果: Article査読

抄録

We establish via a probabilistic approach the quenched invariance principle for a class of long range random walks in independent (but not necessarily identically distributed) balanced random environments, with the transition probability from x to y on average being comparable to |x − y|(d+α) with α ∈ (0, 2]. We use the martingale property to estimate exit time from balls and establish tightness of the scaled processes, and apply the uniqueness of the martingale problem to identify the limiting process. When α ∈ (0, 1), our approach works even for non-balanced cases. When α = 2, under a diffusive with the logarithmic perturbation scaling, we show that the limit of scaled processes is a Brownian motion.

本文言語English
ページ(範囲)2243-2267
ページ数25
ジャーナルAnnales de l'institut Henri Poincare (B) Probability and Statistics
57
4
DOI
出版ステータスPublished - 2021 11月
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Quenched invariance principle for long range random walks in balanced random environments」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル