TY - JOUR
T1 - R3MR
T2 - Region Growing Based 3D Mesh Reconstruction for Big Data Platform
AU - Li, Hong An
AU - Zhang, Min
AU - Yu, Keping
AU - Qi, Xin
AU - Hua, Qiaozhi
AU - Zhu, Yu
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2020
Y1 - 2020
N2 - Visualization is one of the most intuitive and perceptible ways for information representation in the big data era. As an essential part of the visualization, 3D mesh reconstruction is facing great challenges due to its characteristics of quantity, non-structure, and low-accuracy. The traditional 3D mesh reconstruction method has strict theoretical proof and can be used to reconstruct the surface of the complex topological structure for computer rendering and display. However, it is not suitable to handle a large number of point cloud and noise point cloud in a big data platform because the process is inefficient, low-automation and requires massive calculations. To address this issue, we propose a region growing based 3D mesh reconstruction (R3MR) in the big data platform. Firstly, we divide the large data points into three categories: flat point set, high curvature point set, and boundary point set. The errors of topological structure for 3D meshes usually occur in the place with large curvatures and noise points, so the division of high curvature point set is beneficial to solve the low-accuracy problem in 3D mesh reconstruction. Moreover, the flat points can be treated as one kind of point to avoid repetitive calculations because their features are basically the same. Hence, the division of the flat point set is beneficial to solve the problem of quantity and massive calculations. Secondly, our proposal is to start the mesh reconstruction from the flat point set progressively, because it can obtain the outline of the 3D model. In many scenarios, such as autonomous driving, only the overall outline of the model is required. Finally, during the 3D mesh reconstruction, the inner edge adjacency list and optimal selection principle are set to improve the robustness of the whole system. Simulation experiments show that the proposed 3D mesh reconstruction can naturally reflect the detailed features of objects in the big data platform, especially effective for the scattered point cloud.
AB - Visualization is one of the most intuitive and perceptible ways for information representation in the big data era. As an essential part of the visualization, 3D mesh reconstruction is facing great challenges due to its characteristics of quantity, non-structure, and low-accuracy. The traditional 3D mesh reconstruction method has strict theoretical proof and can be used to reconstruct the surface of the complex topological structure for computer rendering and display. However, it is not suitable to handle a large number of point cloud and noise point cloud in a big data platform because the process is inefficient, low-automation and requires massive calculations. To address this issue, we propose a region growing based 3D mesh reconstruction (R3MR) in the big data platform. Firstly, we divide the large data points into three categories: flat point set, high curvature point set, and boundary point set. The errors of topological structure for 3D meshes usually occur in the place with large curvatures and noise points, so the division of high curvature point set is beneficial to solve the low-accuracy problem in 3D mesh reconstruction. Moreover, the flat points can be treated as one kind of point to avoid repetitive calculations because their features are basically the same. Hence, the division of the flat point set is beneficial to solve the problem of quantity and massive calculations. Secondly, our proposal is to start the mesh reconstruction from the flat point set progressively, because it can obtain the outline of the 3D model. In many scenarios, such as autonomous driving, only the overall outline of the model is required. Finally, during the 3D mesh reconstruction, the inner edge adjacency list and optimal selection principle are set to improve the robustness of the whole system. Simulation experiments show that the proposed 3D mesh reconstruction can naturally reflect the detailed features of objects in the big data platform, especially effective for the scattered point cloud.
KW - 3D mesh reconstruction
KW - Point cloud
KW - big data
KW - region growing
UR - http://www.scopus.com/inward/record.url?scp=85085553223&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085553223&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2020.2993964
DO - 10.1109/ACCESS.2020.2993964
M3 - Article
AN - SCOPUS:85085553223
SN - 2169-3536
VL - 8
SP - 91740
EP - 91750
JO - IEEE Access
JF - IEEE Access
M1 - 9091146
ER -