Rating prediction by correcting user rating bias

Masanao Ochi, Yutaka Matsuo, Makoto Okabe, Rikio Onai

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

We propose a novel method to improve the prediction accuracy on the rating prediction task by correcting the bias of user ratings. We demonstrate that the manner of user rating and review is biased and that it is necessary to correct this difference for more accurate prediction. Our proposed method comprises approaches based on the detection of each user value to ratings: The bias of the rating is detected using entropy of user rating and by updating word weights only when the words appear in the review, the problem of bias is reduced. We implement this idea by extending the Prank algorithm. We apply a review - item matrix as a feature matrix instead of a user - item matrix because of its volume of information. Our quantitative evaluation shows that our method improves the prediction accuracy (the Rank Loss measurement) significantly by 8.70 % compared with the normal Prank algorithm. Our proposed method helps users find out what they care about when buying something, and is applicable to newer variants of the Prank algorithm. Moreover, it is useful to most review sites because we use only rating and review data.

本文言語English
ホスト出版物のタイトルProceedings - 2012 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2012
ページ452-456
ページ数5
DOI
出版ステータスPublished - 2012
外部発表はい
イベント2012 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2012 - Macau, China
継続期間: 2012 12月 42012 12月 7

Other

Other2012 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2012
国/地域China
CityMacau
Period12/12/412/12/7

ASJC Scopus subject areas

  • 人工知能
  • ソフトウェア

フィンガープリント

「Rating prediction by correcting user rating bias」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル