Real-time scheduler using neural networks for scheduling independent and nonpreemptable tasks with deadlines and resource requirements

Ruck Thawonmas*, Norio Shiratori, Shoichi Noguchi

*この研究の対応する著者

    研究成果: Article査読

    7 被引用数 (Scopus)

    抄録

    This paper describes a neural network scheduler for scheduling independent and nonpreemptable tasks with deadlines and resource requirements in critical real-time applications, in which a schedule is to be obtained within a short time span. The proposed neural network scheduler is an integrate model of two Hopfield-Tank neural network models. To cope with deadlines, a heuristic policy which is modified from the earliest deadline policy is embodied into the proposed model. Computer simulations show that the proposed neural network scheduler has a promising performance, with regard to the probability of generating a feasible schedule, compared with a scheduler that executes a conventional algorithm performing the earliest deadline policy.

    本文言語English
    ページ(範囲)947-955
    ページ数9
    ジャーナルIEICE Transactions on Information and Systems
    E76-D
    8
    出版ステータスPublished - 1993 8月

    ASJC Scopus subject areas

    • コンピュータ グラフィックスおよびコンピュータ支援設計
    • 情報システム
    • ソフトウェア

    フィンガープリント

    「Real-time scheduler using neural networks for scheduling independent and nonpreemptable tasks with deadlines and resource requirements」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル