Real-time traffic signal learning control using BPNN based on predictions of the probabilistic distribution of standing vehicles

Chengyou Cui*, Jisun Shin, Heehyol Lee

*この研究の対応する著者

研究成果: Article査読

8 被引用数 (Scopus)

抄録

In this article, a new method to predict the probabilistic distribution of a traffic jam at crossroads and a traffic signal learning control system are proposed. First, a dynamic Bayesian network is used to build a forecasting model to predict the probabilistic distribution of vehicles in a traffic jam during each period of the traffic signals. An adjusting algorithm for traffic signal control is applied to maintain the probability of a lower limit and a ceiling of standing vehicles to get the desired probabilistic distribution of standing vehicles. In order to achieve real-time control, a learning control system based on a back-propagation neural network is used. Finally, the effectiveness of the new traffic signal control system using actual traffic data will be shown.

本文言語English
ページ(範囲)58-61
ページ数4
ジャーナルArtificial Life and Robotics
15
1
DOI
出版ステータスPublished - 2010 9月 3

ASJC Scopus subject areas

  • 生化学、遺伝学、分子生物学(全般)
  • 人工知能

フィンガープリント

「Real-time traffic signal learning control using BPNN based on predictions of the probabilistic distribution of standing vehicles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル