TY - JOUR
T1 - Recent progress of MPPC-based scintillation detectors in high precision X-ray and gamma-ray imaging
AU - Kataoka, J.
AU - Kishimoto, A.
AU - Fujita, T.
AU - Nishiyama, T.
AU - Kurei, Y.
AU - Tsujikawa, T.
AU - Oshima, T.
AU - Taya, T.
AU - Iwamoto, Y.
AU - Ogata, H.
AU - Okochi, H.
AU - Ohsuka, S.
AU - Ikeda, H.
AU - Yamamoto, S.
N1 - Publisher Copyright:
© 2014 Elsevier B.V. All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - The multi-pixel photon counter (MPPC) is a promising light sensor for various applications, not only in physics experiments but also in nuclear medicine, industry, and even high-energy astrophysics. In this paper, we present the current status and most recent progress of the MPPC-based scintillation detectors, such as (1) a high-precision X-ray and gamma-ray spectral image sensor, (2) next-generation PET detectors with MRI, TOF, and DOI measurement capabilities, and (3) a compact gamma camera for environmental radiation surveys. We first present a new method of fabricating a Ce:GAGG scintillator plate (1 or 2 mm thick) with ultra-fine resolution (0.2 mm/pixel), cut using a dicing saw to create 50μm wide micro-grooves. When the plate is optically coupled with a large-area MPPC array, excellent spatial resolution of 0.48 mm (FWHM) and energy resolution of 14% (FWHM) are obtained for 122 keV gamma rays. Hence, the detector can act as a convenient "multi-color" imaging device that can potentially be used for future SPECT and photon-counting CT. We then show a prototype system for a high-resolution MPPC-based PET scanner that can realize 1 mm (FWHM) spatial resolution, even under a strong magnetic field of 4.7 T. We develop a front-end ASIC intended for future TOF-PET scanner with a 16-channel readout that achieves a coincidence time resolution of 489 ps (FWHM). A novel design for a module with DOI-measurement capability for gamma rays is also presented by measuring the pulse height ratio of double-sided MPPCs coupled at both ends of scintillation crystal block. Finally, we present the concept of a two-plane Compton camera consisting of Ce:GAGG scintillator arrays coupled with thin MPPC arrays. As a result of the thin and compact features of the MPPC device, the camera not only achieves a small size (14×14×15 cm3) and light weight (1.9 kg) but also excellent sensitivity, compared to the conventional PMT-based pinhole camera used in Fukushima. Finally, we briefly describe a new product recently developed in conjunction with Hamamatsu Photonics K.K. that offers improved sensitivity and angular resolution of Δθ-8° (FWHM) at 662 keV, by incorporating DOI-segmented scintillator arrays.
AB - The multi-pixel photon counter (MPPC) is a promising light sensor for various applications, not only in physics experiments but also in nuclear medicine, industry, and even high-energy astrophysics. In this paper, we present the current status and most recent progress of the MPPC-based scintillation detectors, such as (1) a high-precision X-ray and gamma-ray spectral image sensor, (2) next-generation PET detectors with MRI, TOF, and DOI measurement capabilities, and (3) a compact gamma camera for environmental radiation surveys. We first present a new method of fabricating a Ce:GAGG scintillator plate (1 or 2 mm thick) with ultra-fine resolution (0.2 mm/pixel), cut using a dicing saw to create 50μm wide micro-grooves. When the plate is optically coupled with a large-area MPPC array, excellent spatial resolution of 0.48 mm (FWHM) and energy resolution of 14% (FWHM) are obtained for 122 keV gamma rays. Hence, the detector can act as a convenient "multi-color" imaging device that can potentially be used for future SPECT and photon-counting CT. We then show a prototype system for a high-resolution MPPC-based PET scanner that can realize 1 mm (FWHM) spatial resolution, even under a strong magnetic field of 4.7 T. We develop a front-end ASIC intended for future TOF-PET scanner with a 16-channel readout that achieves a coincidence time resolution of 489 ps (FWHM). A novel design for a module with DOI-measurement capability for gamma rays is also presented by measuring the pulse height ratio of double-sided MPPCs coupled at both ends of scintillation crystal block. Finally, we present the concept of a two-plane Compton camera consisting of Ce:GAGG scintillator arrays coupled with thin MPPC arrays. As a result of the thin and compact features of the MPPC device, the camera not only achieves a small size (14×14×15 cm3) and light weight (1.9 kg) but also excellent sensitivity, compared to the conventional PMT-based pinhole camera used in Fukushima. Finally, we briefly describe a new product recently developed in conjunction with Hamamatsu Photonics K.K. that offers improved sensitivity and angular resolution of Δθ-8° (FWHM) at 662 keV, by incorporating DOI-segmented scintillator arrays.
KW - Compton camera
KW - Multi-pixel photon counter (MPPC)
KW - Next generation PET
KW - Scintillator
UR - http://www.scopus.com/inward/record.url?scp=84928679198&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928679198&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2014.11.004
DO - 10.1016/j.nima.2014.11.004
M3 - Article
AN - SCOPUS:84928679198
SN - 0168-9002
VL - 784
SP - 248
EP - 254
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
ER -