Redox-Driven Spin Transition in a Layered Battery Cathode Material

Eriko Watanabe, Wenwen Zhao, Akira Sugahara, Benoit Mortemard De Boisse, Laura Lander, Daisuke Asakura, Yohei Okamoto, Takashi Mizokawa, Masashi Okubo, Atsuo Yamada*


研究成果: Article査読

16 被引用数 (Scopus)


A spin transition between high-spin (HS) and low-spin (LS) states in a solid can occur when the energies of two spin configurations intersect, which is usually caused by external perturbations such as temperature, pressure, and magnetic fields, with substantial influence to its physical and chemical properties. Here, we discover the electrochemical "redox reaction" as a new driving force to induce reversible HS-LS spin transition. Although reversible solid-state redox reaction has been thoroughly investigated as the fundamental process in battery electrode materials, coupling between redox reactions and spin transitions has not been explored. Using density functional theory calculations, we predicted the existence of redox-driven spin transition occurring exclusively for the Co 3+ /Co 2+ redox couple in layered transition-metal oxides, leading to a colossal potential hysteresis (>1 V) between the cathodic (LS Co 3+ to LS Co 2+ ) and anodic (HS Co 2+ to HS Co 3+ ) reactions. The predicted potential hysteresis associated with the spin transition of Co was experimentally verified for Na x Ti 0.5 Co 0.5 O 2 by monitoring the electrochemical potential, local coordination structure, electronic structure, and magnetic moment.

ジャーナルChemistry of Materials
出版ステータスPublished - 2019 4月 9

ASJC Scopus subject areas

  • 化学 (全般)
  • 化学工学(全般)
  • 材料化学


「Redox-Driven Spin Transition in a Layered Battery Cathode Material」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。