Relation classification for semantic structure annotation of text

Yulan Yan*, Yutaka Matsuo, Mitsuru Ishizuka, Toshio Yokoi

*この研究の対応する著者

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

Confronting the challenges of annotating naturally occurring text into a semantically structured form to facilitate automatic information extraction, current Semantic Role Labeling (SRL) systems have been specifically examining a semantic predicate-argument structure. Based on the Concept Description Language for Natural Language (CDL.nl) which is intended to describe the concept structure of text using a set of pre-defined semantic relations, we develop a parser to add a new layer of semantic annotation of natural language sentences as an extension of SRL. With the assumption that all relation instances are detected, we present a relation classification approach facing the challenges of CDL.nl relation extraction. Preliminary evaluation on a manual dataset, using Support Vector Machine, shows that CDL.nl relations can be classified with good performance.

本文言語English
ホスト出版物のタイトルProceedings - 2008 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2008
ページ377-380
ページ数4
DOI
出版ステータスPublished - 2008
外部発表はい
イベント2008 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2008 - Sydney, NSW
継続期間: 2008 12月 92008 12月 12

Other

Other2008 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2008
CitySydney, NSW
Period08/12/908/12/12

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「Relation classification for semantic structure annotation of text」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル