Relation classification using coarse and fine-grained networks with SDP supervised key words selection

Yiping Sun, Yu Cui, Jinglu Hu, Weijia Jia*

*この研究の対応する著者

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

In relation classification, previous work focused on either whole sentence or key words, meeting problems when sentence contains noise or key words are extracted falsely. In this paper, we propose coarse and fine-grained networks for relation classification, which combine sentence and key words together to be more robust. Then, we propose a word selection network under shortest dependency path (SDP) supervision to select key words automatically instead of pre-processed key words and attention, which guides word selection network to a better feature space. A novel opposite loss is also proposed by pushing useful information in unselected words back to selected ones. In SemEval-2010 Task 8, results show that under the same features, proposed method outperforms state-of-the-art methods for relation classification.

本文言語English
ホスト出版物のタイトルKnowledge Science, Engineering and Management - 11th International Conference, KSEM 2018, Proceedings
編集者Weiru Liu, Bo Yang, Fausto Giunchiglia
出版社Springer Verlag
ページ514-522
ページ数9
ISBN(印刷版)9783319993645
DOI
出版ステータスPublished - 2018
イベント11th International Conference on Knowledge Science, Engineering and Management, KSEM 2018 - Changchun, China
継続期間: 2018 8月 172018 8月 19

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
11061 LNAI
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other11th International Conference on Knowledge Science, Engineering and Management, KSEM 2018
国/地域China
CityChangchun
Period18/8/1718/8/19

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Relation classification using coarse and fine-grained networks with SDP supervised key words selection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル