Relationship Between Intrinsic Randomness with f-Divergence and Fixed-Length Source Coding

Ryo Nomura*

*この研究の対応する著者

研究成果: Conference contribution

抄録

This paper deals with the relationship between the intrinsic randomness (IR) problem and the fixed-length source coding problem. The IR problem is one of random number generation problems and optimum achievable rates (optimum IR rate) with respect to several approximation measures such as the variational distance, the Kullback-Leibler (KL) divergence and f-divergences, have been investigated. In particular, it has been shown that the optimum IR rate with respect to the variational distance has a close relationship with the supremum of the unachievable rate in the source coding problem. Inspired by this result, in this paper, we consider the optimum IR rate with respect to a subclass of f-divergences and try to show a relationship with the unachievable rate in the source coding problem. The subclass of f-divergences considered in this paper includes several well-known measures, such as the variational distance, the KL divergence, the Hellinger distance. We also consider a class of normalized f-divergences, which includes the normalized KL divergence.

本文言語English
ホスト出版物のタイトル2022 IEEE International Symposium on Information Theory, ISIT 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ228-233
ページ数6
ISBN(電子版)9781665421591
DOI
出版ステータスPublished - 2022
イベント2022 IEEE International Symposium on Information Theory, ISIT 2022 - Espoo, Finland
継続期間: 2022 6月 262022 7月 1

出版物シリーズ

名前IEEE International Symposium on Information Theory - Proceedings
2022-June
ISSN(印刷版)2157-8095

Conference

Conference2022 IEEE International Symposium on Information Theory, ISIT 2022
国/地域Finland
CityEspoo
Period22/6/2622/7/1

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 情報システム
  • モデリングとシミュレーション
  • 応用数学

フィンガープリント

「Relationship Between Intrinsic Randomness with f-Divergence and Fixed-Length Source Coding」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル