Remarks on Gagliardo-Nirenberg type inequality with critical Sobolev space and BMO

Hideo Kozono*, Hidemitsu Wadade

*この研究の対応する著者

研究成果: Article査読

42 被引用数 (Scopus)

抄録

We consider the generalized Gagliardo-Nirenberg inequality in ℝn in the homogeneous Sobolev space Hs, rn with the critical differential order s = n/r, which describes the embedding such as Lpn∩ Hn/r,rn Lqn for all q with p q < ∞, where 1 < p < ∞ and 1 < r < ∞. We establish the optimal growth rate as q → ∞ of this embedding constant. In particular, we realize the limiting end-point r = ∞ as the space of BMO in such a way that ||u|| LqnCnq||u||L pnp}{q}}||u||BMO1p}{q}} with the constant C n depending only on n. As an application, we make it clear that the well known John-Nirenberg inequality is a consequence of our estimate. Furthermore, it is clarified that the L -bound is established by means of the BMO-norm and the logarithm of the Hs, r -norm with s > n/r, which may be regarded as a generalization of the Brezis-Gallouet- Wainger inequality.

本文言語English
ページ(範囲)935-950
ページ数16
ジャーナルMathematische Zeitschrift
259
4
DOI
出版ステータスPublished - 2008 8月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Remarks on Gagliardo-Nirenberg type inequality with critical Sobolev space and BMO」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル