Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients

Shigeaki Koike, Toshimi Takahashi

研究成果: Article査読

14 被引用数 (Scopus)

抄録

We study the comparison principle and interior Hölder continuity of viscosity solutions of F(x, u(x),Du(x),D2u(x)) + H(x,Du(x))-f(x) = 0 in O, where F satisfies the standard "structure condition" and H has superlinear growth with respect to Du. Following Caffarelli, Crandall, Kocan and Świȩch [3], we first present the comparison principle between Lp-viscosity subsolution and Lp-strong supersolutions. We next show the interior Hölder continuity for Lp-viscosity solutions of the above equation. For this purpose, modifying some arguments in [1] by Caffarelli, we obtain the Harnack inequality for them when the growth order of H with respect to Du is less than 2.

本文言語English
ページ(範囲)493-512
ページ数20
ジャーナルAdvances in Differential Equations
7
4
出版ステータスPublished - 2002
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル