TY - JOUR
T1 - Remarks on spreading and vanishing for free boundary problems of some reaction-diffusion equations
AU - Kaneko, Yuki
AU - Oeda, Kazuhiro
AU - Yamada, Yoshio
PY - 2015/1/10
Y1 - 2015/1/10
N2 - We discuss a free boundary problem for a di¤usion equation in a onedimensional interval which models the spreading of invasive or new species. Moreover, the free boundary represents a spreading front of the species and its dynamical behavior is determined by a Stefan-like condition. This problem has been proposed by Du and Lin (2010) and, recently, Kaneko and Yamada have studied a free boundary problem for a general reaction-di¤usion equation under Dirichlet boundary conditions. The main purpose of this paper is to define ‘‘spreading’’ and ‘‘vanishing’’ of species for a free boundary problem with general nonlinearity and study the underlying principle to determine the spreading or vanishing behavior as time tends to infinity. It will be proved that vanishing occurs if and only if the free boundary stays in a bounded interval, and that, when vanishing occurs, the population decreases exponentially to zero in large time.
AB - We discuss a free boundary problem for a di¤usion equation in a onedimensional interval which models the spreading of invasive or new species. Moreover, the free boundary represents a spreading front of the species and its dynamical behavior is determined by a Stefan-like condition. This problem has been proposed by Du and Lin (2010) and, recently, Kaneko and Yamada have studied a free boundary problem for a general reaction-di¤usion equation under Dirichlet boundary conditions. The main purpose of this paper is to define ‘‘spreading’’ and ‘‘vanishing’’ of species for a free boundary problem with general nonlinearity and study the underlying principle to determine the spreading or vanishing behavior as time tends to infinity. It will be proved that vanishing occurs if and only if the free boundary stays in a bounded interval, and that, when vanishing occurs, the population decreases exponentially to zero in large time.
KW - Comparison principle
KW - Free boundary problem
KW - Reaction-diffusion equation
KW - Spreading and vanishing of species
KW - Upper and lower solutions
UR - http://www.scopus.com/inward/record.url?scp=84920996986&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84920996986&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:84920996986
SN - 0532-8721
VL - 57
SP - 449
EP - 465
JO - Funkcialaj Ekvacioj
JF - Funkcialaj Ekvacioj
IS - 3
ER -