抄録
We introduce a new notion of renormalized dissipative solutions for the Cauchy problem of a quasilinear anisotropic degenerate parabolic equation ut + div F(u) = div (A(u)∇ u) +f with locally Lipschitz-continuous flux F and L1 data, and prove the equivalence of such solutions and renormalized entropy solutions in the sense of Bendahmane and Karlsen. As applications, we apply our result to certain relaxation systems in general L1-setting and construct a renormalized dissipative solution.
本文言語 | English |
---|---|
ページ(範囲) | 481-503 |
ページ数 | 23 |
ジャーナル | Communications in Applied Analysis |
巻 | 9 |
号 | 3-4 |
出版ステータス | Published - 2005 7月 |
ASJC Scopus subject areas
- 分析
- 数値解析
- モデリングとシミュレーション
- 応用数学