抄録
Applying Kontsevich's iterated integral for tangles, we get an isotopy invariant of tangles. We give a method to compute the integral of a tangle combinatorially from modified integrals of some simple tangles. We localize the integral by moving the end points of the tangle to an extreme configuration, and modify the integral so that it is convergent. By using a similar technique, we generalize Kontsevich's invariant to a framed tangle.
本文言語 | English |
---|---|
ページ(範囲) | 535-562 |
ページ数 | 28 |
ジャーナル | Communications in Mathematical Physics |
巻 | 168 |
号 | 3 |
DOI | |
出版ステータス | Published - 1995 4月 |
外部発表 | はい |
ASJC Scopus subject areas
- 統計物理学および非線形物理学
- 数理物理学