Reputation-Aware Incentive Mechanism of Federated Learning: A Mean Field Game Approach

Kangkang Sun, Jun Wu*, Jianhua Li

*この研究の対応する著者

研究成果: Conference contribution

抄録

Federated Learning (FL) protects data privacy by sharing gradients across clients rather than local training data. It has always been a hot research issue to motivate users to actively contribute local data and participate in the federated learning aggregation process. This paper proposes a novel Mean-Field-Game-based Federated Learning incentive mechanism. We first model the process of federated learning aggregation as a mean-field game problem across clients. We then design a mean-field federated learning gradient calculation algorithm based on stochastic differential equations, i.e., HJB and FPK equations. We build an efficient client reputation-aware incentive mechanism that improves global learning performance by comparing the cosine similarity of the obtained mean-field and individual FL gradients. Finally, experimental results show that our incentive mechanism outperforms the baseline algorithms in FL learning performance.

本文言語English
ホスト出版物のタイトルProceedings - 2024 IEEE 9th International Conference on Smart Cloud, SmartCloud 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ページ48-53
ページ数6
ISBN(電子版)9798350389500
DOI
出版ステータスPublished - 2024
外部発表はい
イベント9th IEEE International Conference on Smart Cloud, SmartCloud 2024 - New York City, United States
継続期間: 2024 5月 102024 5月 12

出版物シリーズ

名前Proceedings - 2024 IEEE 9th International Conference on Smart Cloud, SmartCloud 2024

Conference

Conference9th IEEE International Conference on Smart Cloud, SmartCloud 2024
国/地域United States
CityNew York City
Period24/5/1024/5/12

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 情報システム
  • モデリングとシミュレーション

フィンガープリント

「Reputation-Aware Incentive Mechanism of Federated Learning: A Mean Field Game Approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル